# Fapas Water and Environmental (LEAP)

Proficiency Testing Programme

2017





## Contents

| Who We Are                                                                            | 4  |
|---------------------------------------------------------------------------------------|----|
| Fapas Proficiency Tests                                                               | 5  |
| Drinking Water Chemistry                                                              | 6  |
| Drinking Water Chemistry Timetable September to December 2016                         | 11 |
| Drinking Water Chemistry Timetable January to April 2017                              | 12 |
| Drinking Water Chemistry Timetable May to December 2017                               | 13 |
| Drinking Water Microbiology                                                           | 14 |
| Drinking Water Microbiology Timetable: September to December 2016                     | 15 |
| Drinking Water Microbiology Timetable: January to May 2017                            | 16 |
| Drinking Water Microbiology Timetable: June to December 2017                          | 16 |
| Drinking Water Taste & Odour Chemical Identification                                  | 17 |
| Drinking Water Taste & Odour Chemical Identification Timetable:                       |    |
| September 2016 to December 2017                                                       | 18 |
| Drinking Water Parasitology                                                           | 19 |
| Drinking Water Parasitology Timetable September to December 2016                      | 19 |
| Drinking Water Parasitology Timetable: January to December 2017                       | 19 |
| Drinking Water Emergency Scenario                                                     | 20 |
| Drinking Water Emergency Scenario Timetable: October 2016 to December 2017            | 21 |
| Environmental Legionella                                                              | 22 |
| Environmental Legionella Timetable: October 2016 to December 2017                     | 22 |
| Environmental Waste Water Chemistry                                                   | 23 |
| Environmental Waste Water Chemistry (continued)                                       | 24 |
| Environmental Waste Water Chemistry Timetable: October 2016 to December 2017          | 26 |
| Environmental High Salinity Water Chemistry                                           | 27 |
| Environmental High Salinity Water Chemistry Timetable: November 2016 to December 2017 | 28 |
| Environmental Soil Chemistry                                                          | 29 |
| Environmental Soil Chemistry Timetable 2017                                           | 29 |
| Environmental Surface Water Chemistry                                                 | 30 |
| Environmental Surface Water Chemistry (continued)                                     | 31 |
| Environmental Surface Water Chemistry Timetable: October 2016 to December 2017        | 31 |



| Price list                | 37 |
|---------------------------|----|
| Technical Information     | 37 |
| Protocols                 | 37 |
| Other technical documents | 37 |
| ISO Accreditation         | 37 |



# Who We Are

Fapas is the leading global provider of proficiency testing schemes, quality control samples and reference materials in the food sector, offering products throughout the year.

Proficiency testing in an independent check of your laboratory procedures providing you with a completely confidential assessment of your capability. Not only does participation in the relevant testing schemes allow you to demonstrate your systems and the technical ability of your staff, it will also help you gain and maintain ISO/17025 accreditation.

Established in 1990, we are an experienced, accredited provider of proficiency tests for the food and water, environmental chemistry and microbiology sectors. Taking part in our proficiency tests provides you with the confidence in your laboratory equipment, methods and staff, and assurance that you are delivering the quality results required by your customers.

We provide our participants with a confidential service that allows you to participate at a level that suits you; there is no minimum number of proficiency tests that you must take part in each year. Our system provides an easy reporting facility via our website and our comprehensive reports, which receive rigorous statistical analysis, contain method comparisons.

We also offer quality control samples and reference materials from selected food chemistry proficiency tests which can be purchased easily through our website throughout the year.

Our four Fapas proficiency testing schemes cover food chemistry, food microbiology, GM and water and environmental analysis.





# **Fapas Proficiency Tests**

# Proficiency Testing in Water and Environmental

Proficiency testing is an essential part of laboratory quality procedures. Taking part gives you confidence in your laboratory equipment, methods and staff, and assurance that you are delivering the quality results demanded by your customers.

The Fapas Water and Environmental Scheme assesses the performance of laboratories in water and environmental testing sectors. The scheme satisfies the UK Drinking Water Inspectorate (DWI) requirements for the Water Supply (Water Quality) Regulation 2010: Regulation 16, Appendix 1 for both chemical and microbiological parameters.

There are ten areas available under Fapas Water and Environmental: drinking water chemistry; microbiology; parasitology; chemical contamination emergency; taste & odour chemical identification; high salinity water; Legionella; soil chemistry; waste water chemistry; and surface water chemistry.



Participation can be at a level that suits your business – from taking part in one of our scheduled tests, through to company-specific closed tests.

Results from each proficiency test receive rigorous statistical analysis, ensuring you have clear feedback on your performance. Comprehensive reports provide information on analytical methods used by other participants. We can provide problem-solving consultancy on your laboratory procedures if required.

Participation in Fapas is easy. Arrangements can be made through our network of agents, or via our website, <u>www.fapas.com</u>. Fapas Food Chemistry follows international guidelines for proficiency testing and is accredited by UKAS to ISO/IEC 17043.



## **Drinking Water Chemistry**

Mainly real drinking water samples for the analysis of inorganics, metals and organics.

| Analyte Groups                     | Analytes                                                                                                                                | Water Type          | Concentration Ranges<br>(approx, after dilution)                                                                                                                                                                                                                                                                                                                   | Volume<br>Supplied<br>(approx) |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 1<br>Major Inorganic<br>Components | sodium<br>potassium<br>chloride<br>calcium<br>magnesium<br>alkalinity<br>total hardness<br>total phosphorus<br>fluoride<br>sulphate     | Real drinking water | 5.0 - 50  mg/l<br>0.3 - 3.0  mg/l<br>6.0 - 50  mg/l<br>10 - 150  mg/l<br>1.0 - 15  mg/l<br>$30 - 300 \text{ mg HCO}_3/l$<br>30 - 130  mg Ca/l<br>$100 - 3000 \mu \text{g P/l}$<br>$150 - 1800 \mu \text{g/l}$<br>8.0 - 100  mg/l                                                                                                                                   | 1 litro                        |
| 2<br>Routine<br>Components         | nitrite<br>nitrate<br>ammonium<br>TOC<br>PI<br>colour (filtered)<br>SR phosphate<br>pH<br>turbidity<br>conductivity @ 20 <sup>0</sup> C | Real drinking water | $\begin{array}{l} 0.02 - 0.6 \text{ mg NO}_2/\text{I} \\ 2.0 - 60 \text{ mg NO}_3/\text{I} \\ 0.1 - 0.6 \text{ mg NH}_4/\text{I} \\ 0.2 - 5.0 \text{ mg/I} \\ 0.2 - 5.0 \text{ mg/I} \\ 0.2 - 20 \text{ HAZEN} \\ 10 - 1500 \ \mu\text{g P/I} \\ 6.0 - 10.0 \ \text{pH units} \\ 0.05 - 4.0 \ \text{NTU} \\ 100 - 600 \ \mu\text{S/cm} @ 20^0\text{C} \end{array}$ | 1 litre                        |
| 3<br>Routine Metals                | cadmium<br>lead<br>iron<br>manganese<br>aluminium<br>copper<br>zinc<br>nickel<br>chromium                                               | Real drinking water | 0.5 – 7.0 μg/l<br>1.0 – 20 μg/l<br>20 – 400 μg/l<br>10 – 75 μg/l<br>20 – 300 μg/l<br>50 – 2000 μg/l<br>50 – 500 μg/l<br>5.0 – 30 μg/l<br>5.0 – 50 μg/l                                                                                                                                                                                                             | 500 ml                         |



| Analyte Groups                                   | Analytes                                                                                                                                                                                                                                                                             | Water Type                                                               | Concentration Ranges<br>(approx, after dilution)                                                                                                                                                                                                                                                                                                                               | Volume<br>Supplied<br>(approx) |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 4<br>Non-Routine<br>Metals                       | mercury<br>barium<br>boron<br>arsenic<br>selenium<br>antimony<br>silver<br>strontium<br>lithium<br>cobalt<br>vanadium<br>molybdenum<br>tin<br>beryllium                                                                                                                              | Standard<br>concentrates or<br>standard solutions<br>in ultra-pure water | $\begin{array}{l} 0.1 - 2.0 \ \mu g/l \\ 100 - 1000 \ \mu g/l \\ 200 - 1500 \ \mu g/l \\ 1.0 - 15 \ \mu g/l \\ 1.0 - 15 \ \mu g/l \\ 1.0 - 5 \ \mu g/l \\ 1.0 - 20 \ \mu g/l \\ 1.0 - 20 \ \mu g/l \\ 1.0 - 20 \ \mu g/l \\ 3.0 - 30 \ \mu g/l \\ 3.0 - 30 \ \mu g/l \\ 3.0 - 30 \ \mu g/l \\ 3.0 - 100 \ \mu g/l \\ 2.0 - 10 \ \mu g/l \end{array}$                           | 500 ml                         |
| 5<br>Inorganic<br>Disinfection By-<br>products   | bromide<br>bromate<br>chlorite<br>chlorate                                                                                                                                                                                                                                           | Standard solution in ultra-pure water                                    | 5 – 200 μg/l<br>1.0 – 20 μg/l<br>1.0 – 200 μg/l<br>1.0 – 1000 μg/l                                                                                                                                                                                                                                                                                                             | 125 ml                         |
| 6<br>Trihalomethanes<br>/Chlorinated<br>Solvents | chloroform<br>dichloromethane<br>bromodichloromethane<br>dibromochloromethane<br>bromoform<br>trichloroethene<br>tetrachloroethene<br>carbon tetrachloride<br>1,2-dichloroethane<br>1,2,3-trichlorobenzene<br>1,3,5-trichlorobenzene<br>hexachlorobutadiene<br>1,1,1-trichloroethane | Ultra-pure water +<br>spiking concentrate<br>in methanol                 | $\begin{array}{l} 2.0 - 100 \ \mu g/l \\ 2.0 - 40 \ \mu g/l \\ 2.0 - 50 \ \mu g/l \\ 2.0 - 50 \ \mu g/l \\ 2.0 - 50 \ \mu g/l \\ 0.5 - 10 \ \mu g/l \\ 0.5 - 10 \ \mu g/l \\ 0.5 - 4.0 \ \mu g/l \\ 0.5 - 4.0 \ \mu g/l \\ 0.1 - 2.0 \ \mu g/l \end{array}$ | 1 litre                        |
| 7<br>Polycyclic<br>Aromatic<br>Hydrocarbons      | anthracene<br>fluoranthene<br>benzo (b) fluoranthene<br>benzo (k) fluoranthene,<br>naphthalene<br>benzo (a) pyrene<br>benzo (ghi) perylene<br>indeno (1,2,3-cd) pyrene                                                                                                               | Real drinking water<br>+ spiking<br>concentrate in<br>methanol           | 0.005 – 0.05 µg/l<br>0.01 – 0.10 µg/l<br>0.003 – 0.050 µg/l<br>0.003 – 0.050 µg/l<br>0.005 – 0.050 µg/l<br>0.002 – 0.020µg/l<br>0.010 – 0.070 µg/l                                                                                                                                                                                                                             | 1 litre                        |



| Analyte Groups       | Analytes                                                                                                                                                                                                                                                                         | Water Type                                                     | Concentration Ranges (approx, after dilution)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Volume<br>Supplied<br>(approx) |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 8<br>OP Pesticides   | alachlor<br>azinphos-ethyl<br>azinphos-methyl<br>dichlorvos<br>fenitrothion<br>malathion<br>mevinphos<br>chlorofenvinphos<br>chlorpyrifos<br>diazinon<br>fenthion<br>parathion-ethyl<br>parathion-methyl<br>cypermethrin<br>propetamphos                                         | Real drinking water<br>+ spiking<br>concentrate in<br>methanol | $0.01 - 0.15 \mu g/l$<br>$0.01 - 0.15 \mu g/l$                                                                                                                                                                                                                                                           | 1 litre                        |
| 9<br>Acid Herbicides | MCPA<br>MCPB<br>2,4-D<br>dichlorprop<br>dicamba,<br>2,4-DB<br>bentazone<br>mecoprop<br>propyzamide<br>ioxynil<br>bromoxynil<br>triclopyr<br>clopyralid<br>fluroxypyr<br>2,3,6-TBA<br>2,4,5-T<br>dichlobenil<br>bromacil<br>metazachlor<br>propachlor<br>benazolin<br>metaldehyde | Real drinking water<br>+ spiking<br>concentrate in<br>methanol | $0.01 - 0.15 \mu g/l$<br>$0.01 - 0.15 \mu g/l$ | 1 litre                        |



| Analyte Groups      | Analytes                                                                                                                                                                                                                                                                                                                                                                                                                                        | Water Type                                                     | Concentration Ranges<br>(approx, after dilution)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Volume<br>Supplied<br>(approx) |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 10<br>OC Pesticides | endrin<br>dieldrin<br>Aldrin<br>p,p' DDT<br>o,p'-DDT<br>p,p'-DDE<br>o,p'-DDE<br>o,p'-DDD<br>o,p-DDD (TDE)<br>hexachlorocyclohexane<br>(alpha)<br>hexachlorocyclohexane<br>(beta)<br>hexachlorocyclohexane<br>(beta)<br>hexachlorocyclohexane<br>(delta)<br>lindane (gamma HCH)<br>trifluralin<br>alpha endosulphan<br>beta endosulphan<br>hexachlorobenzene<br>heptachlor<br>heptachlor epoxide (total),<br>pentachlorobenzene<br>pendimethalin | Real drinking water<br>+ spiking<br>concentrate in<br>methanol | $\begin{array}{l} 0.01 - 0.15 \ \mu g/l \\ 0.006 - 0.05 \ \mu g/l \\ 0.006 - 0.05 \ \mu g/l \\ 0.01 - 0.15 \ \mu g/l \\ 0.006 - 0.04 \ \mu g/l \\ 0.006 - 0.04 \ \mu g/l \\ 0.01 - 0.15 \ \mu g/l \\ 0.01 - 0.15 \ \mu g/l \\ 0.01 - 0.15 \ \mu g/l \\ 0.006 - 0.04 \ \mu g/l \\ 0.01 - 0.15 \ \mu g/l \\ 0.01 - 0.15 \ \mu g/l \\ 0.01 - 0.15 \ \mu g/l \\ 0.006 - 0.04 \ \mu g/l \\ 0.01 - 0.15 \ \mu g/l \\ 0.01 - 0.15 \ \mu g/l \\ 0.01 - 0.15 \ \mu g/l \\ 0.006 - 0.04 \ \mu g/l \\ 0.01 - 0.15 \ \mu g/l \\ 0.006 - 0.04 \ \mu g/l \\ 0.01 - 0.15 \ \mu g/l \\ 0.01 - 0.01 + 0.01 \\ 0.01 - 0.01 + 0.01 \\ 0.01 - 0.01 + 0.01 \\ 0.01 - 0.0$ | 1 litre                        |
|                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                | 0.01 0.10 µg/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |



| Analyte Groups                         | Analytes                                                                                                                                                                                                                                          | Water Type                                                     | Concentration Ranges (approx, after dilution)                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Volume<br>Supplied<br>(approx) |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 11<br>BTEX                             | benzene<br>toluene<br>ethylbenzene<br>styrene<br>o-xylene<br>m-xylene<br>p-xylene<br>m+p xylene<br>total xylene                                                                                                                                   | Real drinking water<br>+ spiking<br>concentrate in<br>methanol | 0.1 – 1.5 μg/l<br>0.2 – 4.0 μg/l<br>0.2 – 8.0 μg/l<br>0.5 – 12.0 μg/l                                                                                                                                                                                                                                                                                                                                                  | 1 litre                        |
| 12<br>Chlorine                         | total & free chlorine                                                                                                                                                                                                                             | Concentrate for dilution up to 1 litre                         | 0.5 – 3.0 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 ml                           |
| 15<br>Triazines and<br>Urea Herbicides | isoproturon<br>diuron<br>linuron<br>chlortoluron<br>monuron<br>methabenzthiazuron<br>diflufenican<br>metamitron<br>simazine<br>atrazine<br>propazine<br>cyanazine<br>trietazine<br>prometryn<br>terbutryn<br>ametryn<br>carbetamide<br>pirimicarb | Real drinking water<br>+ spiking<br>concentrate in<br>methanol | $0.01 - 0.15 \mu g/l$<br>$0.01 - 0.15 \mu g/l$ | 1 litre                        |
| 16<br>Total Cyanide                    | total cyanide                                                                                                                                                                                                                                     | Concentrate for dilution up to 1 litre                         | 0.01 – 0.10 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 ml                           |
| 17<br>Haloacetic Acids                 | monochloroacetic acid<br>(MCA)<br>dichloroacetic acid (DCA)<br>trichloroacetic acid (TCA)<br>Monobromoacetic acid<br>(MBA)<br>dibromoacetic acid (DBA)                                                                                            | Ultra-pure water +<br>spiking concentrate<br>in methanol       | 5.0 – 50 μg/l<br>5.0 – 50 μg/l<br>5.0 – 50 μg/l<br>5.0 – 50 μg/l<br>5.0 – 50 μg/l                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 litre                        |



#### Fapas Water and Environmental

## **Drinking Water Chemistry Timetable September to December 2016**

| distribution | DWC006     | DWC007     | DWC008     | DWC009     | DWC010     |
|--------------|------------|------------|------------|------------|------------|
| date         | 19/09/2016 | 27/09/2016 | 14/11/2016 | 21/11/2016 | 05/12/2016 |
| Group 1      |            |            |            |            |            |
| Group 2      |            |            |            |            |            |
| Group 3      |            |            |            |            |            |
| Group 4      |            |            |            |            |            |
| Group 5      |            |            |            |            |            |
| Group 6      |            |            |            |            |            |
| Group 7      |            |            |            |            |            |
| Group 8      |            |            |            |            |            |
| Group 9      |            |            |            |            |            |
| Group 10     |            |            |            |            |            |
| Group 11     |            |            |            |            |            |
| Group 12     |            |            |            |            |            |
| Group 15     |            |            |            |            |            |
| Group 16     |            |            |            |            |            |



Closing date for registrations for Groups 9, 12, 15 & 16 is **four** weeks before the start dates for these tests. Closing date for registrations for all other Groups is **two** weeks before the start date of these tests

### Drinking Water Chemistry Timetable January to April 2017

| distribution | DWC011         | DWC012         | DWC013         | DWC014         | DWC015         |
|--------------|----------------|----------------|----------------|----------------|----------------|
| date         | 16/01/2017     | 23/01/2017     | 13/02/2017     | 27/03/2017     | 11/04/2017     |
| Group 1      |                | <u>DWC0105</u> |                | <u>DWC0106</u> |                |
| Group 2      |                | <u>DWC0205</u> |                | <u>DWC0206</u> |                |
| Group 3      |                | DWC0305        |                | <u>DWC0306</u> |                |
| Group 4      |                | <u>DWC0403</u> |                |                |                |
| Group 5      |                | <u>DWC0503</u> |                |                |                |
| Group 6      |                |                | <u>DWC0604</u> |                |                |
| Group 7      |                |                | <u>DWC0704</u> |                |                |
| Group 8      |                |                | <u>DWC0804</u> |                |                |
| Group 9      |                |                |                |                | <u>DWC0903</u> |
| Group 10     | <u>DWC1004</u> |                |                |                | <u>DWC1005</u> |
| Group 11     | <u>DWC1104</u> |                |                |                | DWC1105        |
| Group 12     |                | DWC1203        |                |                |                |
| Group 15     | DWC1502        |                |                |                |                |
| Group 16     |                | DWC1603        |                |                |                |
| Group 17     |                |                |                |                |                |



Closing date for registrations for Groups 9, 12, 15, 16 & 17 is **four** weeks before the start dates for these tests. Closing date for registrations for all other Groups is **two** weeks before the start date of these tests



#### **Drinking Water Chemistry Timetable May to December 2017**

| distribution | DWC016         | DWC017         | DWC018         | DWC019         | DWC020         | DWC021         | DWC022         | DWC023         | DWC024         |
|--------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| date         | 22/05/2017     | 30/05/2017     | 10/07/2017     | 24/07/2017     | 14/08/2017     | 25/09/2017     | 09/10/2017     | 13/11/2017     | 20/11/2017     |
| Group 1      | DWC0107        |                | DWC0108        |                |                | DWC0109        |                | <u>DWC0110</u> |                |
| Group 2      | DWC0207        |                | DWC0208        |                |                | DWC0209        |                | <u>DWC0210</u> |                |
| Group 3      | DWC0307        |                | <u>DWC0308</u> |                |                | <u>DWC0309</u> |                | <u>DWC0310</u> |                |
| Group 4      | DWC0404        |                | <u>DWC0405</u> |                |                |                |                | <u>DWC0406</u> |                |
| Group 5      | DWC0504        |                | <u>DWC0505</u> |                |                |                |                | <u>DWC0506</u> |                |
| Group 6      |                | DWC0605        |                |                | DWC0606        |                |                |                | DWC0607        |
| Group 7      |                | <u>DWC0705</u> |                |                | <u>DWC0706</u> |                |                |                | <u>DWC0707</u> |
| Group 8      |                | <u>DWC0805</u> |                |                | <u>DWC0806</u> |                |                |                | <u>DWC0807</u> |
| Group 9      |                |                |                |                |                |                | <u>DWC0904</u> |                |                |
| Group 10     |                |                |                | <u>DWC1006</u> |                |                | <u>DWC1007</u> |                |                |
| Group 11     |                |                |                | <u>DWC1106</u> |                |                | <u>DWC1107</u> |                |                |
| Group 12     | <u>DWC1204</u> |                | <u>DWC1205</u> |                |                |                |                | <u>DWC1206</u> |                |
| Group 15     |                |                |                | DWC1503        |                |                |                |                |                |
| Group 16     | DWC1604        |                | DWC1605        |                |                |                |                | DWC1606        |                |
| Group 17     |                | <u>DWC1701</u> |                |                |                |                |                |                | DWC1702        |

Closing date for registrations for Groups 9, 12, 15, 16 & 17 is **four** weeks before the start dates for these tests. Closing date for registrations for all other Groups is **two** weeks before the start date of these tests

#### **Drinking Water Microbiology**

The 2016 samples are solid tablets and the 2017 samples supplied are lyophilised vials, both of which require reconstituting with your laboratory's own sterile deionised (or distilled) water to 1 litre before analysis. Depending on your order up to four samples may be supplied for each distribution:

- Sample A: For Total Coliforms & *Escherichia coli*, this sample contains *Escherichia coli* and another coliform organism.
- Sample B: For Colony Count (22°C/3 days), Colony Count (37°C/2 days).
- Sample C **2016**: For Enterococci together with *Clostridium perfringens*\* **OR** *Pseudomonas aeruginosa*. \*NB another Clostridium/Pseudomonas species may be added to test laboratories' ability to confirm *Clostridium perfringens I Pseudomonas aeruginosa*.
- Sample C 2017: For Enterococci together with *Clostridium perfringens*\* AND *Pseudomonas aeruginosa.* \*NB another Clostridium/Pseudomonas species may be added to test laboratories' ability to confirm *Clostridium perfringens / Pseudomonas aeruginosa.*
- Organism Identification: This is a nutrient agar slope (2016) or lyophilised vial (2017) which requires rehydrating with a growth broth (e.g. nutrient broth), which has been inoculated with a Gram negative rod-shaped organism **but please note**, occasionally a Gram positive organism may be used. The organism chosen is one which is routinely recovered from water.





14

## Drinking Water Microbiology Timetable: September to December 2016

|                                      | Distribution Number and Dispatch Date |            |            |            |  |  |
|--------------------------------------|---------------------------------------|------------|------------|------------|--|--|
|                                      | DWM005                                | DWM006     | DWM007     | DWM008     |  |  |
| Test                                 | 13/09/2016                            | 11/10/2016 | 08/11/2016 | 06/12/2016 |  |  |
| Total coliforms and Escherichia coli |                                       |            |            |            |  |  |
| Colony Counts (22ºC/3 days)          |                                       |            |            |            |  |  |
| Colony Counts (37ºC/2 day)           |                                       |            |            |            |  |  |
| Enterococci                          |                                       |            |            |            |  |  |
| Clostridium perfringens              |                                       |            |            |            |  |  |
| Pseudomonas aeruginosa               |                                       |            |            |            |  |  |
| Organism Identification              |                                       |            |            |            |  |  |

Closing date for registrations is **five** weeks before the start date of these tests





## Drinking Water Microbiology Timetable: January to May 2017

|                                      | Distribution Number and Dispatch Date |                |                |            |                |  |
|--------------------------------------|---------------------------------------|----------------|----------------|------------|----------------|--|
|                                      | DWM009                                | DWM010         | DWM011         | DWM012     | DWM013         |  |
| Test                                 | 10/01/2017                            | 14/02/2017     | 14/03/2017     | 18/04/2017 | 16/05/2017     |  |
| Total coliforms and Escherichia coli |                                       | <u>DWM0110</u> | <u>DWM0111</u> | DWM0112    | <u>DWM0113</u> |  |
| Colony Counts (22ºC/3 days)          |                                       | DWM0210        | DWM0211        | DWM0212    | DWM0213        |  |
| Colony Counts (37ºC/2 day)           |                                       | <u>DWM0210</u> | DWM0211        | DWM0212    | DWM0213        |  |
| Enterococci                          |                                       | <u>DWM0310</u> | DWM0311        | DWM0312    | DWM0313        |  |
| Clostridium perfringens              |                                       | DWM0310        | DWM0311        | DWM0312    | DWM0313        |  |
| Pseudomonas aeruginosa               |                                       | <u>DWM0310</u> | <u>DWM0311</u> | DWM0312    | DWM0313        |  |
| Organism Identification              |                                       |                | <u>DWM0404</u> |            |                |  |

Closing date for registrations is **four** weeks before the start date of these tests

## Drinking Water Microbiology Timetable: June to December 2017

|                                         | Distribution Number and Dispatch Date |                |                |                |                |                |
|-----------------------------------------|---------------------------------------|----------------|----------------|----------------|----------------|----------------|
|                                         | DWM014                                | DWM015         | DWM016         | DWM017         | DWM018         | DWM019         |
| Test                                    | 13/06/2017                            | 18/07/2017     | 12/09/2017     | 10/10/2017     | 07/11/2017     | 05/12/2017     |
| Total coliforms and<br>Escherichia coli | <u>DWM0114</u>                        | <u>DWM0115</u> | <u>DWM0116</u> | <u>DWM0117</u> | <u>DWM0118</u> | <u>DWM0119</u> |
| Colony Counts (22ºC/3 days)             | <u>DWM0214</u>                        | DWM0215        | <u>DWM0216</u> | DWM0217        | <u>DWM0218</u> | <u>DWM0219</u> |
| Colony Counts (37ºC/2 day)              | DWM0214                               | DWM0215        | DWM0216        | DWM0217        | DWM0218        | DWM0219        |
| Enterococci                             | <u>DWM0314</u>                        | DWM0315        | <u>DWM0316</u> | <u>DWM0317</u> | <u>DWM0318</u> | <u>DWM0319</u> |
| Clostridium perfringens                 | <u>DWM0314</u>                        | <u>DWM0315</u> | <u>DWM0316</u> | <u>DWM0317</u> | <u>DWM0318</u> | <u>DWM0319</u> |
| Pseudomonas aeruginosa                  | <u>DWM0314</u>                        | DWM0315        | DWM0316        | DWM0317        | <u>DWM0318</u> | <u>DWM0319</u> |
| Organism Identification                 | DWM0405                               |                |                | <u>DWM0406</u> |                |                |

Closing date for registrations is **four** weeks before the start date of these tests



#### **Drinking Water Taste & Odour Chemical Identification**

This programme is aimed at testing the capabilities of a laboratory to analyse a chemically contaminated drinking water sample for completely unknown compound(s) which may produce a taste or odour.

# Participating laboratories should NOT undertake any taste (organoleptic) testing as the samples supplied may contain toxic chemicals

Participants will be sent a drinking water sample contaminated with chemical(s) known to produce taste and odour problems, together with a corresponding 'blank' drinking water sample. Please note, the 'blank' sample is supplied solely to allow the laboratory to compare the background matrix of the contaminated drinking water.

Participants are required to submit responses to the following questions:

- What taste and odour producing chemical(s) are in the drinking water? NB participants should **not** undertake any taste (organoleptic) testing
- What is your estimated detection limit for this chemical?
- Where may this chemical have originated from?
- What methods were used to detect the taste and odour contaminant(s)?

Results must be e-mailed or faxed to Fapas<sup>®</sup>. The closing date for submission of results will be 3 weeks from the start date for the exercise.

Once per year a Discussion Forum is held at Fera, York, to discuss the outcomes of each taste and odour contamination test. The meeting is an important opportunity for participants to share information on detecting the contaminant(s) present. The cost for participating in the meeting is included in the price for participation in this test, with a maximum of 2 people per organisation attending. Chatham House Rules apply at these discussion forums.



### Drinking Water Taste & Odour Chemical Identification Timetable: September 2016 to December 2017

|               |                     | Test Details                          |
|---------------|---------------------|---------------------------------------|
| dispatch date | distribution number | test                                  |
| 17/07/2017    | TOCHEM06            | Taste & Odour Chemical Identification |

Closing date for registrations is **two** weeks before the start date for this test

Contaminated Drinking Water Samples, labelled TASTE & ODOUR CHEMICAL CONTAMINATION:

• 2 x 1 litre glass bottles for analysis of 'organics'

NB participants should **not** undertake any taste (organoleptic) testing on this sample

#### Blank Drinking Water Samples, labelled BLANK:

• 2 x 1 litre glass bottles for analysis of 'organics'

NB participants should **not** undertake any taste (organoleptic) testing on this sample





#### **Drinking Water Parasitology**

**Suspension A** is a suspension of Cryptosporidium and/or Giardia in phosphate buffered saline (PBS). Approximately 1 ml is supplied. Samples may be prepared either from commercially available concentrates or formalin fixed faecal material. Participants are required to count the oocysts and cysts by fluorescence microscopy and/or any other technique that they routinely use.

**Suspension B** is a PBS Cryptosporidium oocyst and/or Giardia suspension. Approximately 1 ml is supplied. This suspension is added to 10 litres of tap water by the participants and then processed by the laboratory's routine analytical method.

#### **Drinking Water Parasitology Timetable September to December 2016**

|              | Distribution Number and<br>Date of Dispatch |            |  |
|--------------|---------------------------------------------|------------|--|
|              | DWP003                                      | DWP004     |  |
| Tests        | 13/09/2016                                  | 08/11/2016 |  |
| Suspension A |                                             |            |  |
| Suspension B |                                             |            |  |

Closing date for registrations is **two** weeks before the start date of these tests

#### Drinking Water Parasitology Timetable: January to December 2017

|              | Distribution Number and Date of Dispatch |                |                |                |                |                |
|--------------|------------------------------------------|----------------|----------------|----------------|----------------|----------------|
|              | DWP005                                   | DWP006         | DWP007         | DWP008         | DWP009         | DWP010         |
| Tests        | 10/01/2017                               | 14/03/2017     | 16/05/2017     | 18/07/2017     | 12/09/2017     | 07/11/2017     |
| Suspension A | DWP0105                                  | <u>DWP0106</u> | <u>DWP0107</u> | <u>DWP0108</u> | <u>DWP0109</u> | <u>DWP0110</u> |
| Suspension B | <u>DWP0205</u>                           | DWP0206        | <u>DWP0207</u> | <u>DWP0208</u> | <u>DWP0209</u> | <u>DWP0210</u> |

Closing date for registrations is two weeks before the start date of these tests



#### **Drinking Water Emergency Scenario**

This programme is aimed at testing the capabilities of a laboratory to analyse a completely unknown chemically contaminated drinking water sample on an emergency short-term rapid screening basis.

Participants will be sent an incident scenario, which will detail how the possible chemical contamination may have occurred, together with contaminated drinking water samples, corresponding 'blank' drinking water samples and a sample to be tested for gross alpha and beta radioactivity. Please note, the 'blank' sample is supplied solely to allow the laboratory to compare the background matrix of the contaminated drinking water.

For a laboratory to gain maximum benefit from participation it is absolutely crucial that laboratory staff have no advance warning of the test.

Participants are required to submit responses to the following questions:

- Is there any significant contamination of the drinking water?
- If so, what is in the water? and the approximate concentration(s)
- Do you have any analytical information that you feel would help the water company to decide if this water could be safely used for non-drinking purposes (e.g. bathing, washing, laundry etc.)
- What methods were used to detect the contaminant(s)?
- Were any screening tests used?

Results must be e-mailed or faxed to Fapas. The closing date for submission of results is 7 days from the start date for the exercise.

Laboratories will be informed by e-mail within 1 day of the closing date of the list of contaminants knowingly added to the test samples.

Once per year a Discussion Forum is held at Fera, York, to discuss the outcomes of each emergency test. The meeting is an important opportunity for participants to share information on detecting the contaminants present. The cost for participating in the meeting is included in the price for participation in these tests, maximum of 2 people per organisation attending. Chatham House Rules apply at these discussion forums.



# Drinking Water Emergency Scenario Timetable: October 2016 to December 2017

|               |                     | Test Details           |
|---------------|---------------------|------------------------|
| dispatch date | distribution number | test                   |
| May 2017      | <u>EMY34</u>        | Contamination Incident |
| October 2017  | <u>EMY35</u>        | Contamination Incident |

Closing date for registrations is two weeks before the start date of these tests

#### Contaminated Drinking Water Samples, labelled CONTAMINATION INCIDENT:

- 2 x 1 litre glass bottles for analysis of 'organics'
- 1 x 1 litre PET bottle for analysis of 'physicals'
- 1 x 250 ml polypropylene bottle for analysis of 'metals' NB this sample is acidified (0.1M nitric acid)

#### Blank Drinking Water Samples, labelled BLANK:

- 2 x 1 litre glass bottles for analysis of 'organics'
- 1 x 1 litre PET bottle for analysis of 'physicals'
- 1 x 250 ml polypropylene bottle for analysis of 'metals' NB this sample is acidified (0.1M nitric acid)

#### Radioactivity Drinking Water Sample, labelled RADIOACTIVITY:

 1 x 500 ml PET bottle only to be tested for gross alpha and beta levels at above 1 Bq/l. NB this sample is acidified (0.1M nitric acid)



#### **Environmental Legionella**

Two lyophilised vials which require reconstitution with laboratories own sterile deionised (or distilled) water to 1 litre before analysis. Participants are required to report results qualitatively, indicating whether *Legionella* spp. is detected or not detected and identify the species present. Quantitative results are requested to be expressed in cfu/l.

#### Environmental Legionella Timetable: October 2016 to December 2017

| date           | 11/10/2016 | 18/04/2017    | 10/10/2017    |
|----------------|------------|---------------|---------------|
| Legionella spp |            | <u>LG0103</u> | <u>LG0104</u> |

Closing date for registrations is **four** weeks before the start date of these tests





### **Environmental Waste Water Chemistry**

The test materials supplied are standard concentrates or standard solutions.

All Groups, except 2 & 4 require dilution with your laboratory's reagent water before analysis. Full instructions regarding this dilution step will be provided.

When diluted the test materials will contain levels of contaminants usually, found in wastewater / effluent samples.

The volume of concentrate supplied is given below together with the dilution required.

| Analyte<br>Groups | Analytes                                                                                                                                                                          | Concentration Ranges<br>(approx, after dilution)                                                                                                 | Volume<br>Supplied<br>(approx) | Dilution<br>Required    |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------|
| 1                 | BOD 5-day<br>COD<br>TOC                                                                                                                                                           | 6.0 – 250 mg/l<br>6.0 – 250 mg/l<br>6.0 – 250 mg/l                                                                                               | 20 ml                          | to 1 I                  |
| 2                 | Dissolved Solids @ 180 °C<br>Suspended Solids<br>Total Solids                                                                                                                     | 23 – 675 mg/l<br>23 – 675 mg/l<br>23 – 675 mg/l                                                                                                  | 500 ml                         | no dilution<br>required |
| 3                 | Nitrate (N)<br>Nitrite (N)<br>Ammonia (N)<br>Chloride<br>Orthophosphate (P)<br>Sulphate (SO <sub>4</sub> )<br>Total Phosphorus (P)<br>Kjeldahl Nitrogen (N)<br>Total Nitrogen (N) | 0.5 - 50  mg/l<br>0.2 - 10  mg/l<br>0.2 - 20  mg/l<br>10.0 - 500  mg/l<br>1.0 - 100  mg/l<br>10.0 - 500  mg/l<br>0.2 - 5  mg/l<br>2.0 - 50  mg/l | 4 x 60ml                       | to 1 l                  |
| 4                 | pH<br>Electrical Conductivity @ 25°C                                                                                                                                              | 1.0 – 13.0 pH units<br>200 – 2000 μS/cm @ 25°C                                                                                                   | 2 x 125 ml                     | no dilution<br>required |



# **Environmental Waste Water Chemistry (continued)**

| Analyte<br>Groups   | Analytes                                                                                                                                                               | Concentration Ranges (approx, after dilution)                                                                                                                                         | Volume<br>Supplied<br>(approx) | Dilution<br>Required |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------|
| 5<br>Trace Metals 1 | Aluminium<br>Arsenic<br>Beryllium<br>Cadmium<br>Chromium (Total)<br>Cobalt<br>Copper<br>Iron<br>Lead<br>Manganese<br>Mercury<br>Nickel<br>Selenium<br>Vanadium<br>Zinc | $200 - 4000 \mu g/l$ $70 - 900$ $8 - 900$ $8 - 750$ $17 - 1000$ $28 - 1000$ $40 - 900$ $200 - 4000$ $70 - 3000$ $70 - 4000$ $2 - 30$ $80 - 3000$ $90 - 2000$ $55 - 2000$ $100 - 2000$ | 20 ml                          | to 1 I               |
| 6<br>Trace Metals 2 | Antimony<br>Barium<br>Boron<br>Molybdenum<br>Silver<br>Strontium<br>Thallium                                                                                           | 95 – 900 μg/l<br>100 – 2500<br>800 – 2000<br>60 – 600<br>26 – 600<br>30 – 300<br>60 – 900                                                                                             | 20 ml                          | to 1 l               |
| 7                   | Hexavalent Chromium                                                                                                                                                    | 45 – 880 μg/l                                                                                                                                                                         | 20 ml                          | to 1 I               |
| 8                   | Alkalinity<br>Calcium<br>Total Hardness<br>Magnesium<br>Potassium<br>Sodium                                                                                            | 10 – 120 (as CaCO <sub>3</sub> ) mg/l<br>3.5 – 110 mg/l<br>17 – 675 (as CaCO <sub>3</sub> ) mg/l<br>2 – 40 mg/l<br>4 – 40<br>6 – 100                                                  | 2 x 20 ml                      | to 1 I               |
| 9                   | Bromide<br>Fluoride                                                                                                                                                    | 1 – 10 mg/l<br>0.3 – 4                                                                                                                                                                | 20 ml                          | to 1 I               |
| 10                  | Oil & Grease<br>Suitable for EPA 1664, SM 5520B and<br>other gravimetric methods<br>(NOT suitable for IR methods)                                                      | 10 – 100 mg/l                                                                                                                                                                         | 2 ml                           | to 1 I               |
| 11                  | Cyanide (Total)                                                                                                                                                        | 0.1 to 1 mg/l                                                                                                                                                                         | 2 ml                           | to 1 I               |
| 12                  | Total Sulphide                                                                                                                                                         | 1 – 10 mg/l                                                                                                                                                                           | 20 ml                          | to 1 I               |
| 13                  | Settleable Solids<br>(Volumetric test using Imhoff cone)                                                                                                               | 5 – 100 ml/l                                                                                                                                                                          | 25 g                           | to 1 I               |
| 14                  | Dissolved Oxygen<br>Dissolved Oxygen (Winkler)                                                                                                                         | 1.0 to 100 mg/l                                                                                                                                                                       | 2 ml                           | to 1 I               |



| Analyte Groups | Analytes                                                                                                                                                                                                        | Concentration Ranges (approx, after dilution)                                                                                                 | Volume<br>Supplied<br>(approx) | Dilution<br>Required |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------|
| 15<br>VOC 1    | Benzene<br>1,2-Dichlorobenzene<br>1,3-Dichlorobenzene<br>Ethylbenzene<br>Methyl tert-butyl ether (MTBE)<br>Naphthalene<br>Toluene<br>1,2,4-Trimethylbenzene<br>1,3,5-Trimethylbenzene<br>m+p-Xylene<br>o-xylene | $8 - 120 \ \mu g/l$<br>8 - 100<br>9 - 125<br>8 - 115<br>9 - 100<br>15 - 100<br>8 - 190<br>7 - 100<br>8 - 100<br>8 - 100<br>8 - 300<br>8 - 300 | 2 ml                           | to 100 ml            |
|                | i otai Xyiene                                                                                                                                                                                                   | 20 – 300                                                                                                                                      |                                |                      |

# **Environmental Waste Water Chemistry (continued)**





### **Environmental Waste Water Chemistry Timetable: October 2016 to December 2017**

| distribution | WW003      | WW004         | WW005         | WW006         | WW007         | WW008         | WW009         |
|--------------|------------|---------------|---------------|---------------|---------------|---------------|---------------|
| date         | 24/10/2016 | 21/02/2017    | 04/04/2017    | 20/06/2017    | 07/08/2017    | 17/10/2017    | 04/12/2017    |
| Group 1      |            | <u>WW0104</u> | <u>WW0105</u> | <u>WW0106</u> | <u>WW0107</u> | <u>WW0108</u> | <u>WW0109</u> |
| Group 2      |            | <u>WW0204</u> | <u>WW0205</u> | <u>WW0206</u> | <u>WW0207</u> | <u>WW0208</u> | <u>WW0209</u> |
| Group 3      |            | <u>WW0304</u> | <u>WW0305</u> | <u>WW0306</u> | <u>WW0307</u> | <u>WW0308</u> | <u>WW0309</u> |
| Group 4      |            | <u>WW0404</u> | <u>WW0405</u> | <u>WW0406</u> | <u>WW0407</u> | <u>WW0408</u> | <u>WW0409</u> |
| Group 5      |            | <u>WW0504</u> | <u>WW0505</u> | <u>WW0506</u> | <u>WW0507</u> | <u>WW0508</u> | <u>WW0509</u> |
| Group 6      |            | <u>WW0604</u> | <u>WW0605</u> | <u>WW0606</u> | <u>WW0607</u> | <u>WW0608</u> | <u>WW0609</u> |
| Group 7      |            | <u>WW0704</u> | <u>WW0705</u> | <u>WW0706</u> | <u>WW0707</u> | <u>WW0708</u> | <u>WW0709</u> |
| Group 8      |            | <u>WW0804</u> | <u>WW0805</u> | <u>WW0806</u> | <u>WW0807</u> | <u>WW0808</u> | <u>WW0809</u> |
| Group 9      |            | <u>WW0904</u> | <u>WW0905</u> | <u>WW0906</u> | <u>WW0907</u> | <u>WW0908</u> | <u>WW0909</u> |
| Group 10     |            | <u>WW1004</u> | <u>WW1005</u> | <u>WW1006</u> | <u>WW1007</u> | <u>WW1008</u> | <u>WW1009</u> |
| Group 11     |            | <u>WW1104</u> | <u>WW1105</u> | <u>WW1106</u> | <u>WW1107</u> | <u>WW1108</u> | <u>WW1109</u> |
| Group 12     |            | <u>WW1204</u> | <u>WW1205</u> | <u>WW1206</u> | <u>WW1207</u> | <u>WW1208</u> | <u>WW1209</u> |
| Group 13     |            | <u>WW1304</u> | <u>WW1305</u> | <u>WW1306</u> | <u>WW1307</u> | <u>WW1308</u> | <u>WW1309</u> |
| Group 14     |            | <u>WW1404</u> | <u>WW1405</u> | <u>WW1406</u> | <u>WW1407</u> | <u>WW1408</u> | <u>WW1409</u> |
| Group 15     |            | <u>WW1504</u> | <u>WW1505</u> | <u>WW1506</u> | <u>WW1507</u> | <u>WW1508</u> | <u>WW1509</u> |

Closing date for registrations is two weeks (for Groups 3 & 4) and four weeks (for Groups 1, 2 & 5-15) before the start date of these tests.



## **Environmental High Salinity Water Chemistry**

Full volume simulated seawater samples made using NaCl with salinity of 3.5%.

| Analyte Groups            | Analytes                                                                                                                                   | Concentration Ranges<br>(approx)                                                                                                                                             | Volume Supplied<br>(approx) |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 1<br>Complex<br>Nutrients | Kjeldahl nitrogen, total (TKN)<br>Nitrogen, total<br>Phosphorus, total                                                                     | 1.5-35 mg/L<br>1.5-35 mg/l<br>0.5-10 mg/l                                                                                                                                    | 500 ml                      |
| 2<br>Simple Nutrients     | Ammonia as N<br>Nitrate as N<br>Nitrate+nitrite as N<br>Nitrite as N<br>Orthophosphate as P                                                | 0.650-19.0 mg/l<br>0.250-40.0 mg/l<br>0.250-40.0mg/l<br>0.400-4.00 mg/l<br>0.500-5.50 mg/l                                                                                   | 500 ml                      |
| 3<br>Minerals             | Calcium, Ca<br>Magnesium, Mg<br>Potassium, K<br>Alkalinity as CaCO3<br>Conductivity (25°C)<br>Hardness, total as CaCO3<br>pH               | 25-110 mg/l<br>2-40 mg/l<br>4-40 mg/l<br>10-100000 mg/l<br>0.00-100 S/cm<br>8.7-275 mg/l<br>5-10 units                                                                       | 500 ml                      |
| 4<br>Trace Metals 1       | Aluminium<br>Arsenic<br>Beryllium<br>Cadmium<br>Chromium<br>Cobalt<br>Copper<br>Iron<br>Lead<br>Manganese<br>Mercury<br>Nickel<br>Selenium | 0-10000 µg/l<br>0-10000 µg/l | 500 ml                      |
| 5<br>Trace Metals 2       | Antimony, Sb<br>Barium, Ba<br>Boron, B<br>Molybdenum, Mo<br>Silver, Ag<br>Strontium, Sr<br>Thallium, TI<br>Tin, Sn<br>Titanium, Ti         | 95-900 μg/l<br>100-2500 μg/l<br>800-2000 μg/l<br>60-600 μg/l<br>26-600 μg/l<br>30-300 μg/l<br>60-900 μg/l<br>1000-5000 μg/l<br>80-300 μg/l                                   | 500 ml                      |



# Environmental High Salinity Water Chemistry Timetable: November 2016 to December 2017

| distribution | HS003      | HS004         | HS005         |
|--------------|------------|---------------|---------------|
| date         | 01/11/2016 | 28/06/2017    | 29/11/2017    |
| Group 1      |            | <u>HS0104</u> | <u>HS0105</u> |
| Group 2      |            | <u>HS0204</u> | <u>HS0205</u> |
| Group 3      |            | <u>HS0304</u> | <u>HS0305</u> |
| Group 4      |            | <u>HS0404</u> | <u>HS0405</u> |
| Group 5      |            | <u>HS0504</u> | <u>HS0505</u> |

Closing date for registrations is **four** weeks before the start date of these tests





| Analytes | Concentration Ranges (approx, after dilution) | Volume Supplied<br>(approx) | Dilution<br>Required |
|----------|-----------------------------------------------|-----------------------------|----------------------|
| Cadmium  | 1.0 – 400 mg/kg                               | 6 – 8 g                     | no dilution required |
| Chromium | 10 – 2000 mg/kg<br>10 – 500 mg/kg             |                             |                      |
| Arsenic  | 1 – 500 mg/kg                                 |                             |                      |
| Barium   | 30 – 2500 mg/kg                               |                             |                      |
| Nickel   | 1 – 200 mg/kg                                 |                             |                      |
| Copper   | 2 – 200 mg/kg                                 |                             |                      |
| Zinc     | 10 – 200 mg/kg                                |                             |                      |
| Mercury  | 0.1 – 200 mg/kg                               |                             |                      |

### **Environmental Soil Chemistry**

Analytical data for Certification was obtained using USEPA SW846, 3rd edition methods 3050 (hot block) and 3051 (microwave) using **nitric acid** extraction. Analysis was carried out according to USEPA methods 6010 (ICP-EOS), 6020 (ICP-MS) and 7000 (AES). Note that nitric acid extraction is not as rigorous as aqua regia. If your laboratory method employs aqua regia to analyse soil samples for metals then these samples may not be suitable.

### **Environmental Soil Chemistry Timetable 2017**

|               | Test Details        |               |  |
|---------------|---------------------|---------------|--|
| dispatch date | distribution number | test          |  |
| 05/07/2017    | SL0104              | <u>SL0104</u> |  |

Closing date for registrations is **four** weeks before the start date of this test





## **Environmental Surface Water Chemistry**

The surface water provided will be sourced from a clean river, reservoir or lake.

| Analyte Groups                          | Analytes                                                                                                                                  | Water Type    | Concentration Ranges<br>(approx)                                                                                                                                                                                                                                                                                                               | Volume<br>Supplied<br>(approx) |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 1<br>Major Inorganic<br>Components      | sodium<br>potassium<br>chloride<br>calcium<br>magnesium<br>alkalinity<br>total hardness<br>total phosphorus<br>fluoride<br>sulphate       | surface water | 5.0 - 50  mg/l<br>0.3 - 3.0  mg/l<br>6.0 - 50  mg/l<br>10 - 150  mg/l<br>1.0 - 15  mg/l<br>$30 - 300 \text{ mg HCO}_3/l$<br>30 - 130  mg Ca/l<br>$100 - 3000 \mu \text{g P/l}$<br>$150 - 1800 \mu \text{g/l}$<br>5.0 - 100  mg/l                                                                                                               | 1 litre +                      |
| 2<br>Routine<br>Components              | nitrite<br>nitrate<br>ammonium<br>TOC<br>PI<br>colour (filtered)*<br>SR phosphate<br>pH<br>turbidity*<br>conductivity @ 20 <sup>0</sup> C | surface water | $\begin{array}{l} 0.02 - 0.6 \text{ mg NO}_2/l\\ 2.0 - 60 \text{ mg NO}_3/l\\ 0.1 - 0.6 \text{ mg NH}_4/l\\ 0.2 - 5.0 \text{ mg/l}\\ 0.2 - 5.0 \text{ mg/l}\\ 0.2 - 30 \text{ HAZEN}\\ 1.0 - 1500 \ \mu\text{g P/l}\\ 6.0 - 10.0 \ \text{pH units}\\ 0.05 - 10.0 \ \text{NTU}\\ 100 - 600 \ \mu\text{S/cm @}\\ 20^{\circ}\text{C} \end{array}$ | spiking<br>conc                |
| 3<br>Metals<br>(in 0.5% Nitric<br>Acid) | iron<br>manganese<br>copper<br>aluminium<br>zinc<br>silver<br>barium<br>boron<br>strontium<br>lithium                                     | surface water | 15 – 400 μg/l<br>10 – 70 μg/l<br>20 – 700 μg/l<br>10 – 500 μg/l<br>20 – 700 μg/l<br>2 – 15 μg/l<br>10 – 700 μg/l<br>25 – 1500 μg/l<br>10 – 1000 μg/l                                                                                                                                                                                           | 500 ml +<br>spiking<br>conc    |

\*These analytes are only available for the 2017 programme.



### **Environmental Surface Water Chemistry (continued)**

The surface water provided will be sourced from a clean river, reservoir or lake.

| Analyte Groups                                | Analytes                                                                                                                                    | Water Type    | Concentration Ranges<br>(approx)                                                                                                                                                                                                               | Volume<br>Supplied<br>(approx) |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 4<br>Toxic Metals<br>(in 0.5% Nitric<br>Acid) | cadmium<br>lead<br>nickel<br>selenium<br>arsenic<br>antimony<br>mercury<br>cobalt<br>vanadium<br>chromium<br>molybdenum<br>tin<br>beryllium | surface water | $0.2 - 7.0 \mu g/l$<br>$1 - 25 \mu g/l$<br>$3 - 30 \mu g/l$<br>$1.0 - 15 \mu g/l$<br>$1.0 - 15 \mu g/l$<br>$0.5 - 7.0 \mu g/l$<br>$0.1 - 2.0 \mu g/l$<br>$2.0 - 30 \mu g/l$<br>$3.0 - 60 \mu g/l$<br>$2.0 - 30 \mu g/l$<br>$1.0 - 100 \mu g/l$ | 500 ml +<br>spiking<br>conc    |

# Environmental Surface Water Chemistry Timetable: October 2016 to December 2017

| distribution | SW002      | SW003         | SW004         |
|--------------|------------|---------------|---------------|
| date         | 17/10/2016 | 06/03/2017    | 11/09/2017    |
| Group 1      |            | <u>SW0103</u> | <u>SW0104</u> |
| Group 2      |            | <u>SW0203</u> | <u>SW0204</u> |
| Group 3      |            | <u>SW0303</u> | <u>SW0304</u> |
| Group 4      |            | <u>SW0403</u> | <u>SW0404</u> |

Closing date for registrations is **two** weeks before the start date of these tests.





| Pound No. | Courier | Programmo namo  | Pound Price | Extra<br>Material<br>Price |
|-----------|---------|-----------------|-------------|----------------------------|
|           | Courier |                 | 123.00      | 60.00                      |
| DWC0106   | ×       |                 | 123.00      | 60.00                      |
| DWC0107   | ×       |                 | 123.00      | 60.00                      |
| DWC0108   | X       |                 | 123.00      | 60.00                      |
| DWC0100   | X       |                 | 123.00      | 60.00                      |
| DWC0109   | ×       |                 | 123.00      | 60.00                      |
| DWC0205   | ×       |                 | 123.00      | 60.00                      |
| DWC0205   | ×       |                 | 123.00      | 60.00                      |
| DWC0200   | ×       |                 | 123.00      | 60.00                      |
| DWC0208   | ×       |                 | 123.00      | 60.00                      |
| DWC0200   | x       |                 | 123.00      | 60.00                      |
| DWC0210   | ×       |                 | 123.00      | 60.00                      |
| DWC0210   | x       |                 | 185.00      | 60.00                      |
| DWC0306   | x       |                 | 185.00      | 60.00                      |
| DWC0307   | ×       |                 | 185.00      | 60.00                      |
| DWC0308   | x       |                 | 185.00      | 60.00                      |
| DWC0309   | x       |                 | 185.00      | 60.00                      |
| DWC0310   | ×       |                 | 185.00      | 60.00                      |
| DWC0403   | x       |                 | 270.00      | 60.00                      |
| DWC0404   | x       |                 | 270.00      | 60.00                      |
| DWC0405   | x       |                 | 270.00      | 60.00                      |
| DWC0406   | x       |                 | 270.00      | 60.00                      |
| DWC0503   | x       |                 | 185.00      | 60.00                      |
| DWC0504   | x       |                 | 185.00      | 60.00                      |
| DWC0505   | x       |                 | 185.00      | 60.00                      |
| DWC0506   | x       |                 | 185.00      | 60.00                      |
| DWC0604   | x       | LEAP CHEM: 2017 | 238.00      | 60.00                      |
| DWC0605   | x       | LEAP CHEM: 2017 | 238.00      | 60.00                      |
| DWC0606   | x       | LEAP CHEM: 2017 | 238.00      | 60.00                      |
| DWC0607   | x       | LEAP CHEM: 2017 | 238.00      | 60.00                      |
| DWC0704   | х       | LEAP CHEM: 2017 | 238.00      | 60.00                      |
| DWC0705   | х       | LEAP CHEM: 2017 | 238.00      | 60.00                      |
| DWC0706   | х       | LEAP CHEM: 2017 | 238.00      | 60.00                      |
| DWC0707   | х       | LEAP CHEM: 2017 | 238.00      | 60.00                      |
| DWC0804   | х       | LEAP CHEM: 2017 | 238.00      | 60.00                      |
| DWC0805   | х       | LEAP CHEM: 2017 | 238.00      | 60.00                      |
| DWC0806   | х       | LEAP CHEM: 2017 | 238.00      | 60.00                      |
| DWC0807   | х       | LEAP CHEM: 2017 | 238.00      | 60.00                      |
| DWC0903   | х       | LEAP CHEM: 2017 | 278.00      | 60.00                      |
| DWC0904   | x       | LEAP CHEM: 2017 | 278.00      | 60.00                      |
| DWC1004   | х       | LEAP CHEM: 2017 | 238.00      | 60.00                      |
| DWC1005   | х       | LEAP CHEM: 2017 | 238.00      | 60.00                      |
| DWC1006   | x       | LEAP CHEM: 2017 | 238.00      | 60.00                      |
| DWC1007   | x       | LEAP CHEM: 2017 | 238.00      | 60.00                      |
| DWC1104   | x       | LEAP CHEM: 2017 | 238.00      | 60.00                      |
| DWC1105   | х       | LEAP CHEM: 2017 | 238.00      | 60.00                      |



| DWC1106 | x | LEAP CHEM: 2017  | 238.00 | 60.00 |
|---------|---|------------------|--------|-------|
| DWC1107 | x | LEAP CHEM: 2017  | 238.00 | 60.00 |
| DWC1203 | x | LEAP CHEM: 2017  | 109.00 | 60.00 |
| DWC1204 | х | LEAP CHEM: 2017  | 109.00 | 60.00 |
| DWC1205 | х | LEAP CHEM: 2017  | 109.00 | 60.00 |
| DWC1206 | х | LEAP CHEM: 2017  | 109.00 | 60.00 |
| DWC1502 | х | LEAP CHEM: 2017  | 278.00 | 60.00 |
| DWC1503 | х | LEAP CHEM: 2017  | 278.00 | 60.00 |
| DWC1603 | х | LEAP CHEM: 2017  | 109.00 | 60.00 |
| DWC1604 | х | LEAP CHEM: 2017  | 109.00 | 60.00 |
| DWC1605 | х | LEAP CHEM: 2017  | 109.00 | 60.00 |
| DWC1606 | х | LEAP CHEM: 2017  | 109.00 | 60.00 |
| DWC1701 | х | LEAP CHEM: 2017  | 279.00 | 60.00 |
| DWC1702 | х | LEAP CHEM: 2017  | 279.00 | 60.00 |
| DWM0109 | х | LEAP MICRO: 2017 | 100.00 | 40.00 |
| DWM0110 | х | LEAP MICRO: 2017 | 100.00 | 40.00 |
| DWM0111 | x | LEAP MICRO: 2017 | 100.00 | 40.00 |
| DWM0112 | x | LEAP MICRO: 2017 | 100.00 | 40.00 |
| DWM0113 | х | LEAP MICRO: 2017 | 100.00 | 40.00 |
| DWM0114 | х | LEAP MICRO: 2017 | 100.00 | 40.00 |
| DWM0115 | х | LEAP MICRO: 2017 | 100.00 | 40.00 |
| DWM0116 | х | LEAP MICRO: 2017 | 100.00 | 40.00 |
| DWM0117 | х | LEAP MICRO: 2017 | 100.00 | 40.00 |
| DWM0118 | х | LEAP MICRO: 2017 | 100.00 | 40.00 |
| DWM0119 | х | LEAP MICRO: 2017 | 100.00 | 40.00 |
| DWM0209 | х | LEAP MICRO: 2017 | 100.00 | 40.00 |
| DWM0210 | х | LEAP MICRO: 2017 | 100.00 | 40.00 |
| DWM0211 | х | LEAP MICRO: 2017 | 100.00 | 40.00 |
| DWM0212 | х | LEAP MICRO: 2017 | 100.00 | 40.00 |
| DWM0213 | х | LEAP MICRO: 2017 | 100.00 | 40.00 |
| DWM0214 | х | LEAP MICRO: 2017 | 100.00 | 40.00 |
| DWM0215 | x | LEAP MICRO: 2017 | 100.00 | 40.00 |
| DWM0216 | x | LEAP MICRO: 2017 | 100.00 | 40.00 |
| DWM0217 | x | LEAP MICRO: 2017 | 100.00 | 40.00 |
| DWM0218 | X | LEAP MICRO: 2017 | 100.00 | 40.00 |
| DWM0219 | x | LEAP MICRO: 2017 | 100.00 | 40.00 |
| DWM0309 | X | LEAP MICRO: 2017 | 100.00 | 40.00 |
| DWM0310 | X | LEAP MICRO: 2017 | 100.00 | 40.00 |
| DWM0311 | x | LEAP MICRO: 2017 | 100.00 | 40.00 |
| DWM0312 | X | LEAP MICRO: 2017 | 100.00 | 40.00 |
| DWM0313 | x | LEAP MICRO: 2017 | 100.00 | 40.00 |
| DWM0314 | X | LEAP MICRO: 2017 | 100.00 | 40.00 |
| DWM0315 | X | LEAP MICRO: 2017 | 100.00 | 40.00 |
| DWM0316 | X | LEAP MICRO: 2017 | 100.00 | 40.00 |
| DWM0317 | X | LEAP MICRO: 2017 | 100.00 | 40.00 |
| DWM0318 | X | LEAP MICRO: 2017 | 100.00 | 40.00 |
| DWM0319 | x | LEAP MICRO: 2017 | 100.00 | 40.00 |
| DWM0403 | X | LEAP MICRO: 2017 | 100.00 | 40.00 |
| DWM0404 | Х | LEAP MICRO: 2017 | 100.00 | 40.00 |



| DWM0405       | х | LEAP MICRO: 2017         | 100.00 | 40.00  |
|---------------|---|--------------------------|--------|--------|
| DWM0406       | х | LEAP MICRO: 2017         | 100.00 | 40.00  |
| DWP0105       | х | LEAP PARA: 2017          | 161.00 | 80.00  |
| DWP0106       | х | LEAP PARA: 2017          | 161.00 | 80.00  |
| DWP0107       | х | LEAP PARA: 2017          | 161.00 | 80.00  |
| DWP0108       | х | LEAP PARA: 2017          | 161.00 | 80.00  |
| DWP0109       | х | LEAP PARA: 2017          | 161.00 | 80.00  |
| DWP0110       | х | LEAP PARA: 2017          | 161.00 | 80.00  |
| DWP0205       | х | LEAP PARA: 2017          | 161.00 | 80.00  |
| DWP0206       | х | LEAP PARA: 2017          | 161.00 | 80.00  |
| DWP0207       | х | LEAP PARA: 2017          | 161.00 | 80.00  |
| DWP0208       | х | LEAP PARA: 2017          | 161.00 | 80.00  |
| DWP0209       | х | LEAP PARA: 2017          | 161.00 | 80.00  |
| DWP0210       | х | LEAP PARA: 2017          | 161.00 | 80.00  |
| EMY34         | х | LEAP EMY: 2017           | 854.00 | 854.00 |
| EMY35         | х | LEAP EMY: 2017           | 854.00 | 854.00 |
| HS0104        | х | LEAP High Salinity: 2017 | 224.00 | 105.00 |
| HS0105        | х | LEAP High Salinity: 2017 | 224.00 | 105.00 |
| HS0204        | х | LEAP High Salinity: 2017 | 224.00 | 105.00 |
| HS0205        | х | LEAP High Salinity: 2017 | 224.00 | 105.00 |
| HS0304        | х | LEAP High Salinity: 2017 | 266.00 | 154.00 |
| HS0305        | х | LEAP High Salinity: 2017 | 266.00 | 154.00 |
| HS0404        | х | LEAP High Salinity: 2017 | 224.00 | 105.00 |
| HS0405        | х | LEAP High Salinity: 2017 | 224.00 | 105.00 |
| HS0504        | x | LEAP High Salinity: 2017 | 224.00 | 105.00 |
| HS0505        | x | LEAP High Salinity: 2017 | 224.00 | 105.00 |
| LG0103        | х | LEAP LEGION: 2017        | 175.00 | 70.00  |
| LG0104        | х | LEAP LEGION: 2017        | 175.00 | 70.00  |
| SL0104        | х | LEAP SOIL: 2017          | 220.00 | 160.00 |
| SW0103        | х | LEAP SURFACE: 2017       | 123.00 | 60.00  |
| SW0104        | х | LEAP SURFACE: 2017       | 123.00 | 60.00  |
| SW0203        | х | LEAP SURFACE: 2017       | 123.00 | 60.00  |
| SW0204        | х | LEAP SURFACE: 2017       | 123.00 | 60.00  |
| SW0303        | x | LEAP SURFACE: 2017       | 238.00 | 60.00  |
| SW0304        | X | LEAP SURFACE: 2017       | 238.00 | 60.00  |
| SW0403        | Х | LEAP SURFACE: 2017       | 270.00 | 60.00  |
| SW0404        | Х | LEAP SURFACE: 2017       | 270.00 | 60.00  |
| TOCHEM06      | X | LEAP TOCHEM: 2017        | 698.00 | 698.00 |
| WW0104        | Х | LEAP EFF: 2017           | 97.00  | 80.00  |
| WW0105        | Х | LEAP EFF: 2017           | 97.00  | 80.00  |
| WW0106        | Х | LEAP EFF: 2017           | 97.00  | 80.00  |
| VVW0107       | x | LEAP EFF: 2017           | 97.00  | 80.00  |
| WW0108        | Х | LEAP EFF: 2017           | 97.00  | 80.00  |
| <u>WW0109</u> | X | LEAP EFF: 2017           | 97.00  | 80.00  |
| WW0204        | x | LEAP EFF: 2017           | 109.00 | 80.00  |
| WW0205        | x | LEAP EFF: 2017           | 109.00 | 80.00  |
| WW0206        | X | LEAP EFF: 2017           | 109.00 | 80.00  |
| WW0207        | X | LEAP EFF: 2017           | 109.00 | 80.00  |
| WW0208        | Х | LEAP EFF: 2017           | 109.00 | 80.00  |



| WW0209 | х | LEAP EFF: 2017 | 109.00 | 80.00 |
|--------|---|----------------|--------|-------|
| WW0304 | х | LEAP EFF: 2017 | 116.00 | 80.00 |
| WW0305 | х | LEAP EFF: 2017 | 116.00 | 80.00 |
| WW0306 | х | LEAP EFF: 2017 | 116.00 | 80.00 |
| WW0307 | х | LEAP EFF: 2017 | 116.00 | 80.00 |
| WW0308 | х | LEAP EFF: 2017 | 116.00 | 80.00 |
| WW0309 | х | LEAP EFF: 2017 | 116.00 | 80.00 |
| WW0404 | х | LEAP EFF: 2017 | 102.00 | 80.00 |
| WW0405 | х | LEAP EFF: 2017 | 102.00 | 80.00 |
| WW0406 | х | LEAP EFF: 2017 | 102.00 | 80.00 |
| WW0407 | х | LEAP EFF: 2017 | 102.00 | 80.00 |
| WW0408 | х | LEAP EFF: 2017 | 102.00 | 80.00 |
| WW0409 | х | LEAP EFF: 2017 | 102.00 | 80.00 |
| WW0504 | х | LEAP EFF: 2017 | 135.00 | 80.00 |
| WW0505 | х | LEAP EFF: 2017 | 135.00 | 80.00 |
| WW0506 | х | LEAP EFF: 2017 | 135.00 | 80.00 |
| WW0507 | х | LEAP EFF: 2017 | 135.00 | 80.00 |
| WW0508 | х | LEAP EFF: 2017 | 135.00 | 80.00 |
| WW0509 | х | LEAP EFF: 2017 | 135.00 | 80.00 |
| WW0604 | х | LEAP EFF: 2017 | 127.00 | 80.00 |
| WW0605 | х | LEAP EFF: 2017 | 127.00 | 80.00 |
| WW0606 | х | LEAP EFF: 2017 | 127.00 | 80.00 |
| WW0607 | х | LEAP EFF: 2017 | 127.00 | 80.00 |
| WW0608 | х | LEAP EFF: 2017 | 127.00 | 80.00 |
| WW0609 | х | LEAP EFF: 2017 | 127.00 | 80.00 |
| WW0704 | х | LEAP EFF: 2017 | 91.00  | 80.00 |
| WW0705 | х | LEAP EFF: 2017 | 91.00  | 80.00 |
| WW0706 | х | LEAP EFF: 2017 | 91.00  | 80.00 |
| WW0707 | х | LEAP EFF: 2017 | 91.00  | 80.00 |
| WW0708 | х | LEAP EFF: 2017 | 91.00  | 80.00 |
| WW0709 | х | LEAP EFF: 2017 | 91.00  | 80.00 |
| WW0804 | х | LEAP EFF: 2017 | 82.00  | 70.00 |
| WW0805 | х | LEAP EFF: 2017 | 82.00  | 70.00 |
| WW0806 | х | LEAP EFF: 2017 | 82.00  | 70.00 |
| WW0807 | X | LEAP EFF: 2017 | 82.00  | 70.00 |
| WW0808 | х | LEAP EFF: 2017 | 82.00  | 70.00 |
| WW0809 | X | LEAP EFF: 2017 | 82.00  | 70.00 |
| WW0904 | х | LEAP EFF: 2017 | 87.00  | 80.00 |
| WW0905 | X | LEAP EFF: 2017 | 87.00  | 80.00 |
| WW0906 | X | LEAP EFF: 2017 | 87.00  | 80.00 |
| WW0907 | X | LEAP EFF: 2017 | 87.00  | 80.00 |
| WW0908 | X | LEAP EFF: 2017 | 87.00  | 80.00 |
| WW0909 | X | LEAP EFF: 2017 | 87.00  | 80.00 |
| WW1004 | X | LEAP EFF: 2017 | 73.00  | 70.00 |
| WW1005 | Х | LEAP EFF: 2017 | 73.00  | 70.00 |
| WW1006 | X | LEAP EFF: 2017 | 73.00  | 70.00 |
| WW1007 | X | LEAP EFF: 2017 | 73.00  | 70.00 |
| WW1008 | Х | LEAP EFF: 2017 | 73.00  | 70.00 |
| WW1009 | Х | LEAP EFF: 2017 | 73.00  | 70.00 |



| WW1104 | х | LEAP EFF: 2017 | 97.00  | 80.00 |
|--------|---|----------------|--------|-------|
| WW1105 | х | LEAP EFF: 2017 | 97.00  | 80.00 |
| WW1106 | х | LEAP EFF: 2017 | 97.00  | 80.00 |
| WW1107 | х | LEAP EFF: 2017 | 97.00  | 80.00 |
| WW1108 | х | LEAP EFF: 2017 | 97.00  | 80.00 |
| WW1109 | х | LEAP EFF: 2017 | 97.00  | 80.00 |
| WW1204 | х | LEAP EFF: 2017 | 116.00 | 80.00 |
| WW1205 | х | LEAP EFF: 2017 | 116.00 | 80.00 |
| WW1206 | х | LEAP EFF: 2017 | 116.00 | 80.00 |
| WW1207 | х | LEAP EFF: 2017 | 116.00 | 80.00 |
| WW1208 | х | LEAP EFF: 2017 | 116.00 | 80.00 |
| WW1209 | х | LEAP EFF: 2017 | 116.00 | 80.00 |
| WW1304 | х | LEAP EFF: 2017 | 116.00 | 80.00 |
| WW1305 | х | LEAP EFF: 2017 | 116.00 | 80.00 |
| WW1306 | х | LEAP EFF: 2017 | 116.00 | 80.00 |
| WW1307 | х | LEAP EFF: 2017 | 116.00 | 80.00 |
| WW1308 | х | LEAP EFF: 2017 | 116.00 | 80.00 |
| WW1309 | х | LEAP EFF: 2017 | 116.00 | 80.00 |
| WW1404 | х | LEAP EFF: 2017 | 109.00 | 80.00 |
| WW1405 | х | LEAP EFF: 2017 | 109.00 | 80.00 |
| WW1406 | х | LEAP EFF: 2017 | 109.00 | 80.00 |
| WW1407 | х | LEAP EFF: 2017 | 109.00 | 80.00 |
| WW1408 | х | LEAP EFF: 2017 | 109.00 | 80.00 |
| WW1409 | х | LEAP EFF: 2017 | 109.00 | 80.00 |
| WW1504 | х | LEAP EFF: 2017 | 119.00 | 80.00 |
| WW1505 | x | LEAP EFF: 2017 | 119.00 | 80.00 |
| WW1506 | x | LEAP EFF: 2017 | 119.00 | 80.00 |
| WW1507 | x | LEAP EFF: 2017 | 119.00 | 80.00 |
| WW1508 | x | LEAP EFF: 2017 | 119.00 | 80.00 |
| WW1509 | x | LEAP EFF: 2017 | 119.00 | 80.00 |

(All prices additional German tax.)



#### **Technical Information**

#### **Protocols**

- Protocol part 1: Generic
   [English] [Espanol]
- Protocol part 5: Fapas Water & Environmental [English] [Espanol]

#### **Other technical documents**

- Example Report
- On line results submission instructions [English] [Espanol]
- Terms & Conditions

#### **ISO Accreditation**

The Fapas proficiency testing schemes are accredited by UKAS, Proficiency Testing Provider No. 0009.



UKAS Accreditation Certificate

This accreditation confirms that we comply with the requirements of International Standard ISO/IEC 17043:2010.

In addition, Fera is accredited by other external bodies to other internationally recognised standards including ISO 9001:2008.

• Fera's Quality Documentation

Fapas (and other proficiency testing schemes) does not award accreditation. That is the responsibility of national accreditation bodies. A list of national and international accreditation bodies can be found at <u>www.fasor.com/iso25</u>. Results of proficiency testing are used by laboratory accreditation bodies as part of the process to assess the ability of laboratories to perform analytical tests for which accreditation is required.

